|
|||||||||||||||||||||||||||||||||||||||||||||||
Higher Topology and Differential Geometry - MATH3701 | |||||||||||||||||||||||||||||||||||||||||||||||
Description Topology and differential geometry both deal with the study of shape: topology from a continuous and differential geometry from a differentiable viewpoint.
This course begins with an introduction to general topology. We then study curves in space and how they bend and twist, and the topology of curves. We then consider surfaces, studying the first and second fundamental forms introduced by Gauss, the various measures of curvature and what they mean for the external and internal appearance and properties of surfaces. We prove the important Gauss-Bonnet theorem and use it to examine topological properties of surfaces, such as the Euler Characteristic. We finish with a look at the hyperbolic plane and a look forward to general Riemannian geometry.
|